Data quality and data governance go hand in hand, and it’s virtually impossible to have one without the other. So, how does data governance impact data quality, and vice versa? Let’s take a look.
Common data quality challenges
Having data of high quality allows business teams to work with regularly updated and simplified data to carry out their projects. For data to be high quality, it must comply with current data protection regulations (such as GDPR).
Data quality isn’t always a guarantee, as there are several factors that can impact quality:
- A large volume of data can be difficult to manage and monitor
- Information can easily become obsolete if it is not updated in all databases
- If the company does not appoint a Data Manager, the databases cannot be cleaned, and erroneous information can accumulate
The role of data governance
While data quality refers to the accuracy and reliability of the data itself, data governance is how the organization manages its data on a high level.
Data governance helps set up a system for measuring data quality through effective indicators. These indicators list and report all erroneous data present in a database and allow the implementation of corrective actions. Data governance requires that all the company’s businesses take responsibility. They must establish data management rules and define the business manager and the missions to be carried out to maintain data quality.
Six indicators of data quality:
- Accuracy: The information indicated by the data is correct, verified, and verifiable
- Completeness: The data is complete, no information is missing
- Compliance with business rules: The data has the right format and is stored in the right place
- Integrity: Consistency with satellite data is ensured
- Uniqueness: Customer data is not duplicated
- Availability: The data is accessible within the authorized timeframe
Data Governance: Improving data quality in 3 key steps
Involve your teams in defining data quality rules
Data quality management is done via data quality rules. This includes, for example, information about the format of an e-mail address. All these rules must be established by the business managers themselves.
The immediate involvement of the business units in drafting data quality rules allows for direct appropriation and more effective monitoring. If these rules are written by data governance managers, they will probably not represent the realities of the field, and the business may not consider them.
The human factor
It is sometimes difficult to determine objectively if the data collected is qualitative, especially if you only use traditional factors. Don’t neglect the human factor! An experienced employee used to using certain data inputs will be better able to tell you if they are satisfied or not. You can use confidence indicators to capture these feeling factors. They guarantee a better representation of the data used within the teams and explain why they are neglected.
Implement machine learning
After defining the rules to be respected, you can couple them with machine learning. This will provide you with recommendations for implementing corrective actions to solve data quality problems.
Don’t forget to get feedback from your employees! Department experts can also assign a confidence score to the data used. The algorithm in charge of evaluating data quality considers the results and verifies the quality of the data according to the rules in place. But not only that: The tool takes into account the use of the data by the different business lines.
Conclusion
It’s clear that data governance is a critical piece of any data quality initiative, and the two concepts work together to drive success. To achieve your company’s data quality goals on an ongoing basis, you’ll need to ensure that these policies are regularly reviewed, updated, and enforced to make sure that they’re as effective as possible. In doing so, you’ll be well on your way to ensuring strong data quality across the entire organization—and having the business insights that matter when it comes to making key decisions.
Without an adequate data governance policy, data quality is difficult to achieve and even more difficult to maintain. Therefore, all the company’s businesses and strategic decision-makers must work together to establish and follow data quality rules.
—
Discover personalized metadata management and data governance – Turn to DataGalaxy to create your company’s data lineage mapping, develop a standardized business glossary, and much more! Check our calendar and select a date that works for you. Request a demo today!